五月婷婷综合激情,欧美双飞,国产精品日韩中文字幕在线观看,亚洲综合在线一区二区三区

產品分類
文章詳情

基于近紅外光譜的陳化大米定性鑒別和摻假分析方法

日期:2025-06-29 19:46
瀏覽次數:175
摘要:大米是我國主要的糧食作物之一。隨著社會經濟的發(fā)展,大米的質量問題逐漸引起了人們的關注。其中,大米的陳化和摻假是一個突出的問題。傳統(tǒng)的大米鑒別方法主要依賴于人工經驗和化學分析技術,普遍存在分析周期長、操作復雜、成本高等問題。因此,需繼續(xù)探索更加準確、快速、穩(wěn)定的大米鑒別方法。

大米是我國主要的糧食作物之一。隨著社會經濟的發(fā)展,大米的質量問題逐漸引起了人們的關注。其中,大米的陳化和摻假是一個突出的問題。傳統(tǒng)的大米鑒別方法主要依賴于人工經驗和化學分析技術,普遍存在分析周期長、操作復雜、成本高等問題。因此,需繼續(xù)探索更加準確、快速、穩(wěn)定的大米鑒別方法。

圖片1.png 

與傳統(tǒng)分析技術相比,近紅外光譜分析技術具有諸多優(yōu)點,它能在幾分鐘內,僅通過對被測樣品完成一次近紅外光譜的采集測量,即可完成其多項性能指標的測定(*多可達十余項指標)。光譜測量時不需要對分析樣品進行前處理;分析過程中不消耗其它材料或破壞樣品;分析重現性好、成本低。

 

因此,在建立大米檢測模型時,可以基于近紅外光譜數據的基礎上采用北方蒼鷹優(yōu)化算法(Northern Goshawk Optimization,NGO)以及對核極限學習機(Kernel Extreme Learning Machine,KELM)的兩個重要參數進行尋優(yōu)并建立模型。

材料與方法

1、材料

實驗樣品為2017年和2022年水稻成熟后,于黑龍江省建三江市七星農場采用五點式隨機采樣法獲取的五優(yōu)稻4號,將其脫粒碾磨至精白米后作為研究樣品。其中新大米樣品為2022年收獲大米,摻假大米樣品為將2017年收獲的大米按照不同比例(25%、50%、75%)摻入2022年收獲的大米中,陳化大米樣品為2017年收獲大米。采用高精度電子秤取(5±0.02)g作為一份樣品,共計新大米30份樣品、摻假大米90份樣品、陳化大米30份樣品。

 

2、儀器與設備

 

TANGO近紅外光譜儀,德國布魯克(北京)科技有限公司。

  

3、實驗方法

3.1光譜預處理

對原始光譜數據進行標準正態(tài)變量變換(Standard Normal Variate,SNV)預處理,用于消除顆粒不均等原因產生的噪聲信息,原理為樣品光譜數據各波數點的吸光度符合一定分布,計算時將每個樣品的原始光譜減去理想光譜,再除以標準差。SNV公式

 

3.2 基于NGO-KELM的陳化大米定性鑒別方法

分別建立KELM分類模型和NGO優(yōu)化后的KELM分類模型。將新鮮大米30份、摻假大米90份以及陳化大米30份共計150份樣本數據隨機按照7∶3的比例分為訓練集(105份)和測試集(45份)。采用訓練集和測試集的預測準確度和F1值作為模型的性能評價指標,并繪制混淆矩陣。


3.3基于NGO-KELM的陳化大米摻假定量分析方法

基于上文定性分析,分別建立KELM回歸模型與NGO優(yōu)化后的KELM回歸模型,對摻假樣品進行摻假量的定性分析,探討KELM模型和NGOKELM模型對新鮮大米中摻雜陳化大米量的預測能力。將新鮮大米30份(摻假量0%)、摻假大米90份(摻假量25%、50%、75%)、陳化大米30份(摻假量100%)共計150份樣本按照7∶3的比例隨機分為訓練集(105份)和測試集(45份)。對于定量預測模型采用決定系數R2和RMSE作為性能評價指標,并繪制柱狀圖來反映預測結果。

 

結果與分析

 

1、定性實驗結果分析

分別建立KELM模型和NGO-KELM模型,對比二者準確度和F1值并繪制混淆矩陣從而確定模型的性能,實驗結果見表1。NGO-KELM模型的訓練集和測試集準確度與F1值均高于未優(yōu)化的KELM模型(NGO-KELM測試集的混淆矩陣見圖1),其測試集準確度提高約5%,說明NGO能有效提高KELM模型的分類準確度。

 

圖1 NGO-KELM模型在測試集上的混淆矩陣表1 各模型結果對比 

2、定量實驗結果分析

分別建立KELM模型和NGO-KELM模型進行實驗發(fā)現,利用NGO優(yōu)化的KELM模型的定量預測表現也有顯著的提升,結果見圖2。

 

圖片6.png

圖2 各模型定量預測結果對比

NGO-KELM模型測試集決定系數R2和RMSE分別提升了0.0541和0.0233,得到了較理想的摻假率檢測精度,見表2,該方法顯著優(yōu)于傳統(tǒng)方法。

表2 各模型定量預測結果

圖片8.png 

3、結論

基于NGO-KELM實現了陳化大米的定性鑒別和摻假定量分析。通過近紅外光譜設備采集標準樣品的信息,并采用NGO優(yōu)化算法對KELM模型進行了優(yōu)化。建立的模型具有較高的準確度和穩(wěn)定性,可以有效鑒別陳化大米,同時能對其摻假進行定量分析,為陳化大米的定性鑒別和摻假定量分析提供了一種新的分析方法。

 


粵公網安備 44010302000429號

琪琪视频一区二区三区| 小穴流水了| 精品一本久久综合亚洲鲁鲁| 去干网欧美最新版本| 站长工具青草原视频在线| 操逼视频嗯嗯嗯啊啊啊好爽| 日韩美女操比视频| 熟女国产导航| 日本大片中文字幕男女爱爱| 字幕日本有码| 国产吧丝袜熟女视频| 大香蕉亚州乱伦| 插jj的视频免费在线观看| jb操b男女| 久久一区二区三区三州| 艹逼网站视频嗯啊嗯| 自拍一二三网站| 在线看一区二区三区无码| AV中文字母| 啪日本啪啪免费视频| 夜间福利爱爱| 爱爱久久综合| 大几把插大逼视频| 亚洲精品国产偷| 免费中文字幕三级片| 国产一级在线aa应| 夜夜操夜夜叫| 抽插视频白浆| 超级碰碰撞91在线视频| 欧美操鸡巴网站| 嗯嗯啊啊啊用力操我逼在线视频观看| 青青草原亚欧在线| 欧美日韩一级视频看看| 小逼逼日大鸡巴视频大鸡巴大大大| 夜夜干天天插| 女人被男人躁得好爽免费视频| 亚洲精品主播| 日韩性αv| 亚洲激情图片黄色片| 蜜臀色欲av午夜久久久一区二区影视 | 美女操逼|